Universal Scaling Functions for Numbers of Percolating Clusters on Planar Lattices.

نویسندگان

  • Hu
  • Lin
چکیده

Using a histogram Monte Carlo method and nonuniversal metric factors of a recent Letter [Phys. Rev. Lett. 75, 193 (1995)], we find that the probability for the appearance of n, n ­ 1, 2, . . . , top to bottom percolating clusters on finite square, planar triangular, and honeycomb lattices falls on the same universal scaling functions, which show interesting behavior as the aspect ratio of the lattice increases. Our results suggest many interesting problems for further research. [S0031-9007(96)00574-1]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal scaling functions for bond percolation on planar-random and square lattices with multiple percolating clusters.

Percolation models with multiple percolating clusters have attracted much attention in recent years. Here we use Monte Carlo simulations to study bond percolation on L1xL2 planar random lattices, duals of random lattices, and square lattices with free and periodic boundary conditions, in vertical and horizontal directions, respectively, and with various aspect ratios L(1)/L(2). We calculate the...

متن کامل

Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals.

The bond-percolation process is studied on periodic planar random lattices and their duals. The thresholds and critical exponents of the percolation transition are determined. The scaling functions of the percolating probability, the existence probability of the appearance of percolating clusters, and the mean cluster size are also calculated. The simulation result of the percolation threshold ...

متن کامل

Universal finite-size scaling functions for percolation on three-dimensional lattices

Using a histogram Monte Carlo simulation method ~HMCSM!, Hu, Lin, and Chen found that bond and site percolation models on planar lattices have universal finite-size scaling functions for the existence probability Ep , the percolation probability P , and the probability Wn for the appearance of n percolating clusters in these models. In this paper we extend above study to percolation on three-di...

متن کامل

Statistical and Computational Physics

(1) Exact universal amplitude ratios for two-dimensional Ising model and a quantum spin chain. (2) Critical behaviour of semi-infinite quenched dilute Ising-like systems in three dimensions: Ordinary transition. (3) Universal scaling functions for bond percolation on planar random and square lattices with multiple percolating clusters. (4) Polydispersity effect and universality of finite-size s...

متن کامل

Cluster analysis and finite-size scaling for Ising spin systems.

Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 1996